On the Hilbert function of a graded Cohen-Macaulay domain
نویسندگان
چکیده
منابع مشابه
Results on Hilbert coefficients of a Cohen-Macaulay module
Let $(R,m)$ be a commutative Noetherian local ring, $M$ a finitely generated $R$-module of dimension $d$, and let $I$ be an ideal of definition for $M$. In this paper, we extend cite[Corollary 10(4)]{P} and also we show that if $M$ is a Cohen-Macaulay $R$-module and $d=2$, then $lambda(frac{widetilde{I^nM}}{Jwidetilde{I^{n-1}M}})$ does not depend on $J$ for all $ngeq 1$, where $J$ is a minimal ...
متن کاملresults on hilbert coefficients of a cohen-macaulay module
let $(r,m)$ be a commutative noetherian local ring, $m$ a finitely generated $r$-module of dimension $d$, and let $i$ be an ideal of definition for $m$. in this paper, we extend cite[corollary 10(4)]{p} and also we show that if $m$ is a cohen-macaulay $r$-module and $d=2$, then $lambda(frac{widetilde{i^nm}}{jwidetilde{i^{n-1}m}})$ does not depend on $j$ for all $ngeq 1$, where $j$ is a minimal ...
متن کاملOn the Cohen-macaulay Modules of Graded Subrings
We give several characterizations for the linearity property for a maximal Cohen-Macaulay module over a local or graded ring, as well as proofs of existence in some new cases. In particular, we prove that the existence of such modules is preserved when taking Segre products, as well as when passing to Veronese subrings in low dimensions. The former result even yields new results on the existenc...
متن کاملOn Cohen-Macaulay rings
In this paper, we use a characterization of R-modules N such that fdRN = pdRN to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the dth local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1991
ISSN: 0022-4049
DOI: 10.1016/0022-4049(91)90034-y